Search results
Results From The WOW.Com Content Network
For objects within the immediate neighborhood of the Sun, the absolute magnitude M and apparent magnitude m from any distance d (in parsecs, with 1 pc = 3.2616 light-years) are related by = = (), where F is the radiant flux measured at distance d (in parsecs), F 10 the radiant flux measured at distance 10 pc.
The absolute magnitude M, of a star or astronomical object is defined as the apparent magnitude it would have as seen from a distance of 10 parsecs (33 ly). The absolute magnitude of the Sun is 4.83 in the V band (visual), 4.68 in the Gaia satellite's G band (green) and 5.48 in the B band (blue). [20] [21] [22]
Apparent magnitude, the brightness of an object as it appears in the night sky. Absolute magnitude, which measures the luminosity of an object (or reflected light for non-luminous objects like asteroids); it is the object's apparent magnitude as seen from a specific distance, conventionally 10 parsecs (32.6 light years).
Visual distance moduli are computed by calculating the difference between the observed apparent magnitude and some theoretical estimate of the absolute magnitude. True distance moduli require a further theoretical step; that is, the estimation of the interstellar absorption coefficient.
The apparent magnitude, the magnitude as seen by the observer (an instrument called a bolometer is used), can be measured and used with the absolute magnitude to calculate the distance d to the object in parsecs [14] as follows: = + or = (+) / where m is the apparent magnitude, and M the absolute magnitude. For this to be accurate, both ...
If the star lies on the main sequence, as determined by its luminosity class, the spectral type of the star provides a good estimate of the star's absolute magnitude. Knowing the apparent magnitude (m) and absolute magnitude (M) of the star, one can calculate the distance (d, in parsecs) of the star using = (/) (see distance modulus).
The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun. The phase curve is useful for characterizing an object's regolith (soil) and atmosphere. It is also the basis for computing the geometrical albedo and the Bond albedo of the body.
The apparent magnitude is the observed visible brightness from Earth which depends on the distance of the object. The absolute magnitude is the apparent magnitude at a distance of 10 pc (3.1 × 10 17 m), therefore the bolometric absolute magnitude is a logarithmic measure of the bolometric luminosity.