When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    For example, consider a conductor moving in the field of a magnet. [8] In the frame of the magnet, that conductor experiences a magnetic force. But in the frame of a conductor moving relative to the magnet, the conductor experiences a force due to an electric field. The motion is exactly consistent in these two different reference frames, but ...

  4. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/Biot–Savart_law

    Some authors [10] [11] call the above equation for the "Biot–Savart law for a point charge" due to its close resemblance to the standard Biot–Savart law. However, this language is misleading as the Biot–Savart law applies only to steady currents and a point charge moving in space does not constitute a steady current.

  5. Magnetism - Wikipedia

    en.wikipedia.org/wiki/Magnetism

    Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism .

  6. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    The net electric flux through a surface is proportional to the charge enclosed by the surface. This is a restatement of Gauss' law. In some materials, the electrons are bound to the atomic nuclei and so are not free to move around but the energy required to set them free is low.

  7. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The force on a negatively charged particle is in the opposite direction. If both the speed and the charge are reversed then the direction of the force remains the same. For that reason a magnetic field measurement (by itself) cannot distinguish whether there is a positive charge moving to the right or a negative charge moving to the left.

  8. Liénard–Wiechert potential - Wikipedia

    en.wikipedia.org/wiki/Liénard–Wiechert_potential

    Electromagnetic field (arbitrary unit) of a positive point charge moving at constant speed. When =, the electromagnetic field reduces to electrostatic field (in blue).Due to its insignificance at large distance, this field is ignored in high energy physics when computing electromagnetic radiation power.

  9. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    Using the right hand rule to find the direction of the magnetic field. The direction of the magnetic field at a point, the direction of the arrowheads on the magnetic field lines, which is the direction that the "north pole" of the compass needle points, can be found from the current by the right-hand rule.