Search results
Results From The WOW.Com Content Network
Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, [2] [3] [4] and stochastic differential equations and Markov chains for simulating living cells in medicine and biology.
A numerical univariate data is discrete if the set of all possible values is finite or countably infinite. Discrete univariate data are usually associated with counting (such as the number of books read by a person). A numerical univariate data is continuous if the set of all possible values is an interval of numbers.
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.
Data may represent a numerical value, in form of quantitative data, or a label, as with qualitative data. Data may be collected, presented and summarised, in one of two methods called descriptive statistics. Two elementary summaries of data, singularly called a statistic, are the mean and dispersion.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
The data from a study can also be analyzed to consider secondary hypotheses inspired by the initial results, or to suggest new studies. A secondary analysis of the data from a planned study uses tools from data analysis, and the process of doing this is mathematical statistics. Data analysis is divided into:
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.