Search results
Results From The WOW.Com Content Network
There are two types of hair cells specific to the auditory system; inner and outer hair cells. Inner hair cells are the mechanoreceptors for hearing: they transduce the vibration of sound into electrical activity in nerve fibers, which is transmitted to the brain. Outer hair cells are a motor structure.
To transmit the sensation of sound to the brain, where it can be processed into the perception of hearing, hair cells of the cochlea must convert their mechanical stimulation into the electrical signaling patterns of the nervous system. Hair cells are modified neurons, able to generate action potentials which can be transmitted to other nerve ...
The middle ear plays a crucial role in the auditory process, as it essentially converts pressure variations in air to perturbations in the fluids of the inner ear. In other words, it is the mechanical transfer function that allows for efficient transfer of collected sound energy between two different media. [ 2 ]
Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane. The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2]
The olivocochlear system is a component of the auditory system involved with the descending control of the cochlea.Its nerve fibres, the olivocochlear bundle (OCB), form part of the vestibulocochlear nerve (VIIIth cranial nerve, also known as the auditory-vestibular nerve), and project from the superior olivary complex in the brainstem to the cochlea.
Partial or total inability to hear is called hearing loss. In humans and other vertebrates, hearing is performed primarily by the auditory system: mechanical waves, known as vibrations, are detected by the ear and transduced into nerve impulses that are perceived by the brain (primarily in the temporal lobe).
They are used for congenital hearing loss when changes to the shape of the inner ear or nerve of hearing may help diagnosis of the cause of the hearing loss. They are also useful in cases where a tumour is suspected or to determine the degree of damage in a hearing loss caused by bacterial infection or auto-immune disease.
Heschl found a cortical structure that appeared differently from most of the temporal lobe. The distinct structure occupied Brodmann area 42 and was later named the transverse temporal gyri of Heschl. [4] The discovery provided insight into the anatomical network within the primary cortex. It is the first site to process incoming sound information.