When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    An object with small inertial mass will accelerate more than an object with large inertial mass when acted upon by the same force. One says the body of greater mass has greater inertia . Active gravitational mass [ note 4 ] is a measure of the strength of an object's gravitational flux (gravitational flux is equal to the surface integral of ...

  3. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    K. "Mass" and "Weight" [See Section K. NOTE] The mass of an object is a measure of the object’s inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it.

  4. Weight - Wikipedia

    en.wikipedia.org/wiki/Weight

    For example, object A weighs 10 times as much as object B, so therefore the mass of object A is 10 times greater than that of object B. This means that an object's mass can be measured indirectly by its weight, and so, for everyday purposes, weighing (using a weighing scale) is an entirely acceptable way of measuring mass. Similarly, a balance ...

  5. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    An overview of ranges of mass. To help compare different orders of magnitude, the following lists describe various mass levels between 10 −67 kg and 10 52 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe.

  6. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  7. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    An experimental method for locating the center of mass is to suspend the object from two locations and to drop plumb lines from the suspension points. The intersection of the two lines is the center of mass. [17] The shape of an object might already be mathematically determined, but it may be too complex to use a known formula.

  8. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The relativistic mass of a moving object is larger than the relativistic mass of an object at rest, because a moving object has kinetic energy. If the object moves slowly, the relativistic mass is nearly equal to the rest mass and both are nearly equal to the classical inertial mass (as it appears in Newton's laws of motion). If the object ...

  9. Roberval balance - Wikipedia

    en.wikipedia.org/wiki/Roberval_Balance

    The mass of the object is equal to the mass of the calibrated masses regardless of where on the plates the items are placed. Since the vertical beams are always vertical, and the weighing platforms always horizontal, the potential energy lost by a weight as its platform goes down a certain distance will always be the same, so it makes no ...