When.com Web Search

  1. Ads

    related to: eigenstates and eigenvalues division rules cheat sheet

Search results

  1. Results From The WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The eigenvalue and eigenvector problem can also be defined for row vectors that left multiply matrix . In this formulation, the defining equation is. where is a scalar and is a matrix. Any row vector satisfying this equation is called a left eigenvector of and is its associated eigenvalue.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    hide. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called ...

  4. Quantum state - Wikipedia

    en.wikipedia.org/wiki/Quantum_state

    e. In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution ...

  5. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    An eigenvalue is said to be non-degenerate if its eigenspace is one-dimensional. The eigenvalues of the matrices representing physical observables in quantum mechanics give the measurable values of these observables while the eigenstates corresponding to these eigenvalues give the possible states in which the system may be found, upon ...

  6. Complete set of commuting observables - Wikipedia

    en.wikipedia.org/wiki/Complete_set_of_commuting...

    In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space, so that the ...

  7. Avoided crossing - Wikipedia

    en.wikipedia.org/wiki/Avoided_crossing

    Avoided crossing. In quantum physics and quantum chemistry, an avoided crossing (sometimes called intended crossing, [1] non-crossing or anticrossing) is the phenomenon where two eigenvalues of a Hermitian matrix representing a quantum observable and depending on N continuous real parameters cannot become equal in value ("cross") except on a ...

  8. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    A stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector, energy eigenstate, energy eigenfunction, or energy eigenket. It is very similar to the concept of atomic orbital and ...

  9. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    Operator (physics) An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context). Because of this, they are useful tools in classical mechanics.