Search results
Results From The WOW.Com Content Network
Combining these two features with the length of the shaft, , one is able to calculate a shaft's angular deflection, , due to the applied torque, : = As shown, the larger the material's shear modulus and polar second moment of area (i.e. larger cross-sectional area), the greater resistance to torsional deflection.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
After the stress distribution within the object has been determined with respect to a coordinate system (,), it may be necessary to calculate the components of the stress tensor at a particular material point with respect to a rotated coordinate system (′, ′), i.e., the stresses acting on a plane with a different orientation passing through ...
Eq. 2 is the cumulative Weibull distribution with scale parameter and shape parameter ; = [^ ()] = constant factor depending on the structure geometry, = structure volume; = relative (size-independent) coordinate vectors, ^ = dimensionless stress field (dependent on geometry), scaled so that the maximum stress be 1; = number of spatial ...
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
When a part is subjected to a cyclic stress, also known as stress range (Sr), it has been observed that the failure of the part occurs after a number of stress reversals (N) even if the magnitude of the stress range is below the material's yield strength. Generally, higher the range stress, the fewer the number of reversals needed for failure.
In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...
Engineering stress and engineering strain are approximations to the internal state that may be determined from the external forces and deformations of an object, provided that there is no significant change in size. When there is a significant change in size, the true stress and true strain can be derived from the instantaneous size of the object.