Search results
Results From The WOW.Com Content Network
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning , there is an integer parameter k , and the goal is to decide whether S can be partitioned into k subsets of equal sum ...
The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]
To find it, start at such a p 0 containing at least two individuals in their reduced list, and define recursively q i+1 to be the second on p i 's list and p i+1 to be the last on q i+1 's list, until this sequence repeats some p j, at which point a rotation is found: it is the sequence of pairs starting at the first occurrence of (p j, q j ...
Coin values can be modeled by a set of n distinct positive integer values (whole numbers), arranged in increasing order as w 1 through w n.The problem is: given an amount W, also a positive integer, to find a set of non-negative (positive or zero) integers {x 1, x 2, ..., x n}, with each x j representing how often the coin with value w j is used, which minimize the total number of coins f(W)
A clique in this graph represents a set of matched pairs of atoms in which all the matches are compatible with each other. [6] A special case of this method is the use of the modular product of graphs to reduce the problem of finding the maximum common induced subgraph of two graphs to the problem of finding a maximum clique in their product.
The statement in the generalizations section, "[the subset sum problem] can actually be defined using any group", is not exactly accurate. For example Z_2 (integers modulo 2) under addition is a group, but finding the answer to the subset sum problem for a set of integers in Z_2 alone is trivial - the power set of Z_2
The assignment problem consists of finding, in a weighted bipartite graph, a matching of maximum size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment, and the graph-theoretic version is called minimum-cost perfect matching.