Search results
Results From The WOW.Com Content Network
The information–action ratio is a concept coined by cultural critic Neil Postman in his work Amusing Ourselves to Death.In short, Postman meant to indicate the relationship between a piece of information and what action, if any, a consumer of that information might reasonably be expected to take once learning it.
Code review (sometimes referred to as peer review) is a software quality assurance activity in which one or more people examine the source code of a computer program, either after implementation or during the development process. The persons performing the checking, excluding the author, are called "reviewers".
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to produce because of the large amount of time needed to label the data. Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce ...
For example, identifying suspects after a crime has been committed, or credit card fraud as it occurs. [4] The core of predictive analytics relies on capturing relationships between explanatory variables and the predicted variables from past occurrences, and exploiting them to predict the unknown outcome. It is important to note, however, that ...
In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2]
Meta-learning [1] [2] is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing ...
Examples of categorical features include gender, color, and zip code. Categorical features typically need to be converted to numerical features before they can be used in machine learning algorithms. This can be done using a variety of techniques, such as one-hot encoding, label encoding, and ordinal encoding.