When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics , the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations , namely those whose matrix is positive-semidefinite .

  3. Derivation of the conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method [1] for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. The intent of this article is to document the important steps in these derivations.

  4. Conjugate gradient squared method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_squared...

    As with the conjugate gradient method, biconjugate gradient method, and similar iterative methods for solving systems of linear equations, the CGS method can be used to find solutions to multi-variable optimisation problems, such as power-flow analysis, hyperparameter optimisation, and facial recognition. [8]

  5. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  6. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...

  7. Biconjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Biconjugate_gradient_method

    In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations A x = b . {\displaystyle Ax=b.\,} Unlike the conjugate gradient method , this algorithm does not require the matrix A {\displaystyle A} to be self-adjoint , but instead one needs to perform ...

  8. Claudio X. González - Pay Pals - The Huffington Post

    data.huffingtonpost.com/paypals/claudio-x-gonzalez

    From January 2008 to April 2009, if you bought shares in companies when Claudio X. González joined the board, and sold them when he left, you would have a -64.6 percent return on your investment, compared to a -42.5 percent return from the S&P 500.

  9. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    If the matrix of the original equation or an eigenvalue problem is symmetric positive definite (SPD), the preconditioner is commonly constructed to be SPD as well, so that the standard conjugate gradient (CG) iterative methods can still be used. Such imposed SPD constraints may complicate the construction of the preconditioner, e.g., requiring ...