Ads
related to: teamsport pl v m n ketone esterconsumereview.org has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Technically there are other ketone esters such as acetoacetate bound to D/L 1,3-butanediol (racemic). This diester has been tested more with deep sea divers. It is not commercially available. [10] Another ketone ester is also referred to as a ketone di-ester which is a bond of C6 and R 1,3 butanediol or C8 and R 1,3 butanediol.
The Reformatsky reaction (sometimes transliterated as Reformatskii reaction) is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters: [1] [2] The Reformatsky reaction. The organozinc reagent, also called a 'Reformatsky enolate', is prepared by treating an alpha-halo ester ...
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [2] and later by Fritz Schlotterbeck in 1907. [3]
For premium support please call: 800-290-4726 more ways to reach us
To illustrate the mechanism, the Japp-Klingemann ester variation will be considered. The first step is the deprotonation of the β-keto-ester. The nucleophilic addition of the enolate anion 2 to the diazonium salt produces the azo compound 3. Intermediate 3 has been isolated in rare cases.
α-Halo carboxylic acids and esters are organic compounds with the respective formulas RCHXCO 2 H and RCHXCO 2 R' where R and R' are organic substituents. The X in these compounds is a halide, usually chloride and bromide. These compounds are often used as intermediates in the preparation of more elaborate derivatives.
The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. [1] The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899.
The Stobbe condensation entails the reaction of an aldehyde or ketone with an ester of succinic acid to generate alkylidene succinic acid or related derivatives. [1] The reaction consumes one equivalent of metal alkoxide. Commonly, diethylsuccinate is a component of the reaction. The usual product is salt of the half-ester.