Ad
related to: magnetic force attractive or repulsive
Search results
Results From The WOW.Com Content Network
Calculating the attractive or repulsive force between two magnets is, in the general case, a very complex operation, as it depends on the shape, magnetization, orientation and separation of the magnets. The magnetic pole model does depend on some knowledge of how the ‘magnetic charge’ is distributed over the magnetic poles.
If two charges have the same sign, the electrostatic force between them is repulsive; if they have different sign, the force between them is attractive. An electric field is a vector field that associates to each point in space the Coulomb force experienced by a unit test charge . [ 19 ]
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...
The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At distances less than 0.7 fm, the nuclear force becomes repulsive.
Earnshaw's theorem has even been proven for the general case of extended bodies, and this is so even if they are flexible and conducting, provided they are not diamagnetic, [2] [3] as diamagnetism constitutes a (small) repulsive force, but no attraction. There are, however, several exceptions to the rule's assumptions, which allow magnetic ...
This equation can be derived from the energy stored in a magnetic field. Energy is force times distance. Rearranging terms yields the equation above. The 1.6 T limit on the field [17] [19] previously mentioned sets a limit on the maximum force per unit core area, or magnetic pressure, an iron-core electromagnet can exert; roughly:
This causes a repulsive force to develop between the sheet and the leading edge of the magnet. In contrast, at the trailing edge (right side), the clockwise current causes a magnetic field pointed down, in the same direction as the magnet's field, resulting in an attractive force between the sheet and the trailing edge of the magnet.