Search results
Results From The WOW.Com Content Network
SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early 1970s. Since then it has been extensively used by many researchers to solve different kinds of fluid flow and heat transfer problems. [1]
The filename extensions used vary, though .q is common for Q-files. Grid files may use .g, .x, .xy, or .xyz, among other extensions. The grid file contains the coordinates of the solution grid, while the solution file contains information typical of a CFD solution, flow density, flow momentum (a vector), and flow energy. [2]
The modern method is simply to create a set of conditions from the above Kirchhoff laws (junctions and head-loss criteria). Then, use a Root-finding algorithm to find Q values that satisfy all the equations. The literal friction loss equations use a term called Q 2, but we want to preserve any changes in direction.
The problem of potential compressible flow over circular cylinder was first studied by O. Janzen in 1913 [4] and by Lord Rayleigh in 1916 [5] with small compressible effects. Here, the small parameter is square of the Mach number M 2 = U 2 / c 2 ≪ 1 {\displaystyle \mathrm {M} ^{2}=U^{2}/c^{2}\ll 1} , where c is the speed of sound .
Evidence for pressure solution has been described from sedimentary rocks that have only been affected by compaction. The most common example of this is bedding plane parallel stylolites developed in carbonates. In a tectonic manner, deformed rocks also show evidence of pressure solution including stylolites at a high angle to bedding. [4]
The design of a complex pressure containment system involves much more than the application of Barlow's formula. For example, in 100 countries the ASME BPVCcode stipulates the requirements for design and testing of pressure vessels.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The pressure in the system must be maintained from the pump right through the pressure vessel. In smaller systems (up to about 10 mL / min) a simple restrictor can be used. This can be either a capillary tube cut to length, or a needle valve which can be adjusted to maintain pressure at different flow rates.