Search results
Results From The WOW.Com Content Network
The fundamental example of a linear complex structure is the structure on R 2n coming from the complex structure on C n.That is, the complex n-dimensional space C n is also a real 2n-dimensional space – using the same vector addition and real scalar multiplication – while multiplication by the complex number i is not only a complex linear transform of the space, thought of as a complex ...
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.
Linear maps are mappings between vector spaces that preserve the vector-space structure. Given two vector spaces V and W over a field F, a linear map (also called, in some contexts, linear transformation or linear mapping) is a map:
The closure property also implies that every intersection of linear subspaces is a linear subspace. [11] Linear span Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G.
In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a ...
Linear operations, given in a linear space by definition, lead to such notions as straight lines (and planes, and other linear subspaces); parallel lines; ellipses (and ellipsoids). However, it is impossible to define orthogonal (perpendicular) lines, or to single out circles among ellipses, because in a linear space there is no structure like ...
A linear space is a basic structure in incidence geometry. A linear space consists of a set of elements called points, and a set of elements called lines. Each line is a distinct subset of the points. The points in a line are said to be incident with the line. Each two points are in a line, and any two lines may have no more than one point in ...
A typical example of a linear functional is integration: the linear transformation defined by the Riemann integral = is a linear functional from the vector space [,] of continuous functions on the interval [,] to the real numbers