When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  3. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The γ factor approaches infinity as v approaches c, and it would take an infinite amount of energy to accelerate an object with mass to the speed of light. The speed of light is the upper limit for the speeds of objects with positive rest mass, and individual photons cannot travel faster than the speed of light. [39]

  4. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.

  5. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This speed acts as a supremum for the speed of local transmission of information in the universe. In this context, "speed of light" really refers to the speed supremum of information transmission or of the movement of ordinary (nonnegative mass) matter, locally, as in a classical vacuum.

  6. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    In classical mechanics, the kinetic energy of a point object (an object so small that its mass can be assumed to exist at one point), or a non-rotating rigid body depends on the mass of the body as well as its speed. The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form:

  7. Michelson–Morley experiment - Wikipedia

    en.wikipedia.org/wiki/Michelson–Morley_experiment

    Alternatively, consider the rearrangement of the speed of light formula =. If the relation v 2 / c 2 << 1 {\displaystyle {v^{2}}/{c^{2}}<<1} is true (if the velocity of the aether is small relative to the speed of light), then the expression can be simplified using a first order binomial expansion;

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.

  9. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    In other words, a massive particle is relativistic when its total mass-energy is at least twice its rest mass. This condition implies that the speed of the particle is close to the speed of light. According to the Lorentz factor formula, this requires the particle to move at roughly 85% of the speed of light.