Search results
Results From The WOW.Com Content Network
45 as the difference of two nonzero squares (in orange) 45 is an odd number and a Størmer number . 45 degrees is half of a right angle. It is also the smallest positive number that can be expressed as the difference of two nonzero squares in more than two ways: 7 2 − 2 2 {\displaystyle 7^{2}-2^{2}} , 9 2 − 6 2 {\displaystyle 9^{2}-6^{2 ...
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive ...
A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime ...
The smallest integer m > 1 such that p n # + m is a prime number, where the primorial p n # is the product of the first n prime numbers. A005235 Semiperfect numbers
A form of unary notation called Church encoding is used to represent numbers within lambda calculus. Some email spam filters tag messages with a number of asterisks in an e-mail header such as X-Spam-Bar or X-SPAM-LEVEL. The larger the number, the more likely the email is considered spam. 10: Bijective base-10: To avoid zero: 26: Bijective base-26
Thus, a highly totient number is a number that has more ways of being expressed as a product of this form than does any smaller number. The concept is somewhat analogous to that of highly composite numbers , and in the same way that 1 is the only odd highly composite number, it is also the only odd highly totient number (indeed, the only odd ...
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.