Search results
Results From The WOW.Com Content Network
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
The sum of the squared lengths of any two chords intersecting at right angles at a given point is the same as that of any other two perpendicular chords intersecting at the same point and is given by 8r 2 − 4p 2, where r is the circle radius, and p is the distance from the centre point to the point of intersection.
The real area is 10,000 2 times the area of the shape on the map. Nevertheless, there is no relation between the area and the perimeter of an ordinary shape. For example, the perimeter of a rectangle of width 0.001 and length 1000 is slightly above 2000, while the perimeter of a rectangle of width 0.5 and length 2 is 5. Both areas are equal to 1.
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field.
A natural extension is to consider Boolean formulas of word equations, [4] in which also negation and disjunction is allowed. In fact, every system (and even every Boolean formula) of word equations, is equivalent to a single word equation. [4] Thus, many results on word equations generalise immediately to such systems (resp. formulas).
In that case, a and b are π / 2 − φ 1,2 (that is, the, co-latitudes), C is the longitude separation λ 2 − λ 1, and c is the desired d / R . Noting that sin( π / 2 − φ) = cos(φ), the haversine formula immediately follows. To derive the law of haversines, one starts with the spherical law of cosines: