Ad
related to: meaning of reflexive in geometry calculator download pc full version
Search results
Results From The WOW.Com Content Network
An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
A Banach space is super-reflexive if all Banach spaces finitely representable in are reflexive, or, in other words, if no non-reflexive space is finitely representable in . The notion of ultraproduct of a family of Banach spaces [ 14 ] allows for a concise definition: the Banach space X {\displaystyle X} is super-reflexive when its ultrapowers ...
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation" [3]) is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, group theory, differentiable manifolds, numerical analysis, number theory, calculus and statistics.
Interactive geometry software (IGS) or dynamic geometry environments (DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a few points and using them to define new objects such as lines , circles or other points.
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space.A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui-meaning "one and a ...
The above concept of relation [a] has been generalized to admit relations between members of two different sets (heterogeneous relation, like "lies on" between the set of all points and that of all lines in geometry), relations between three or more sets (finitary relation, like "person x lives in town y at time z "), and relations between ...