Search results
Results From The WOW.Com Content Network
In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. . Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing
This equation also is a direct consequence of the linearity of Maxwell's equations. It is helpful to associate changing electric currents with a build-up or decrease of magnetic field energy. The corresponding energy transfer requires or generates a voltage.
However, the maximum power theorem does not apply to its "downstream" connection. That connection is an impedance bridging connection; it emulates a high-voltage, low-resistance source to maximize efficiency. On the power grid the overall load is usually inductive. Consequently, power factor correction is most commonly achieved with banks of ...
Such arrays will evenly balance the polyphase load between the phases of the source system. For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage.
Three power factor scenarios are shown, where (a) the line serves an inductive load so the current lags receiving end voltage, (b) the line serves a completely real load so the current and receiving end voltage are in phase, and (c) the line serves a capacitive load so the current leads receiving end voltage.
For economic and other considerations, power systems are rarely power factor corrected to unity power factor. [46] Power capacitor application with harmonic currents requires power system analysis to avoid harmonic resonance between capacitors and transformer and circuit reactances. [47] Common bus power factor correction is recommended to ...
To avoid magnetic inrush, only for transformers with an air gap in the core, the inductive load needs to be synchronously connected near a supply voltage peak, in contrast with the zero-voltage switching, which is desirable to minimize sharp-edged current transients with resistive loads such as high-power heaters.
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...