Search results
Results From The WOW.Com Content Network
It is a special case of the configuration interaction method in which all Slater determinants (or configuration state functions, CSFs) of the proper symmetry are included in the variational procedure (i.e., all Slater determinants obtained by exciting all possible electrons to all possible virtual orbitals, orbitals which are unoccupied in the electronic ground state configuration).
Configuration interaction (CI) is a post-Hartree–Fock linear variational method for solving the nonrelativistic Schrödinger equation within the Born–Oppenheimer approximation for a quantum chemical multi-electron system. Mathematically, configuration simply describes the linear combination of Slater determinants used for the
Python-based Simulations of Chemistry Framework (PySCF) is an ab initio computational chemistry program natively implemented in Python program language. [ 1 ] [ 2 ] The package aims to provide a simple, light-weight and efficient platform for quantum chemistry code developing and calculation.
Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not adequate (e.g., for molecular ground states which are quasi-degenerate with low-lying excited states or in bond-breaking situations).
In quantum chemistry, size consistency and size extensivity are concepts relating to how the behaviour of quantum-chemistry calculations changes with the system size. Size consistency (or strict separability) is a property that guarantees the consistency of the energy behaviour when interaction between the involved molecular subsystems is nullified (for example, by distance).
These include Hartree–Fock theory, where the wavefunction is a single determinant, and all those methods which use Hartree–Fock theory as a reference such as Møller–Plesset perturbation theory, and Coupled cluster and Configuration interaction theories.
The Davidson correction is an energy correction often applied in calculations using the method of truncated configuration interaction, which is one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry. It was introduced by Ernest R. Davidson. [1]
It contains new configuration interaction code (written by Jeppe Olsen), new integral code (written by Roland Lindh) and coupled cluster code (written at Comenius University). MOLCAS 4 (1999) was a first release, which runs on any Unix or Linux operating system. In 2001 MOLCAS 5 has been released, featuring a distributed model for code development.