Search results
Results From The WOW.Com Content Network
The overall chemical reaction is: CO 2 + Ca(OH) 2 → CaCO 3 + H 2 O + heat (in the presence of water) Each mole of CO 2 (44 g) reacts with one mole of calcium hydroxide (74 g) and produces one mole of water (18 g). The reaction can be considered as a strong-base-catalysed, water-facilitated reaction. [5]
Its solubility product K sp of 5.02 × 10 −6 at 25 °C, [1] its dissociation in water is large enough that its solutions are basic according to the following dissolution reaction: Ca(OH) 2 → Ca 2+ + 2 OH −. The solubility is affected by the common-ion effect. Its solubility drastically decreases upon addition of hydroxide or calcium sources.
Its usage varies from about 30 to 50 kilograms (65–110 lb) per ton of steel. The quicklime neutralizes the acidic oxides, SiO 2, Al 2 O 3, and Fe 2 O 3, to produce a basic molten slag. [10] Ground quicklime is used in the production of aerated concrete such as blocks with densities of ca. 0.6–1.0 g/cm 3 (9.8–16.4 g/cu in). [10]
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
Each ion can be either monatomic (termed simple ion), such as sodium (Na +) and chloride (Cl −) in sodium chloride, or polyatomic, such as ammonium (NH + 4) and carbonate (CO 2− 3) ions in ammonium carbonate. Salts containing basic ions hydroxide (OH −) or oxide (O 2−) are classified as bases, such as sodium hydroxide and potassium oxide.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The reaction of calcium carbide with water, producing acetylene and calcium hydroxide, [5] was discovered by Friedrich Wöhler in 1862. CaC 2 + 2 H 2 O → C 2 H 2 + Ca(OH) 2 . This reaction was the basis of the industrial manufacture of acetylene, and is the major industrial use of calcium carbide.