When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum coverage problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_coverage_problem

    The maximum coverage problem is a classical question in computer science, computational complexity theory, and operations research. It is a problem that is widely taught in approximation algorithms. As input you are given several sets and a number . The sets may have some elements in common.

  3. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...

  4. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    Apply dynamic programming to this path decomposition to find a longest path in time (!), where is the number of vertices in the graph. Since the output path has length at least as large as d {\displaystyle d} , the running time is also bounded by O ( ℓ ! 2 ℓ n ) {\displaystyle O(\ell !2^{\ell }n)} , where ℓ {\displaystyle \ell } is the ...

  5. Longest common substring - Wikipedia

    en.wikipedia.org/wiki/Longest_common_substring

    One can find the lengths and starting positions of the longest common substrings of and in (+) time with the help of a generalized suffix tree. A faster algorithm can be achieved in the word RAM model of computation if the size σ {\displaystyle \sigma } of the input alphabet is in 2 o ( log ⁡ ( n + m ) ) {\displaystyle 2^{o\left({\sqrt {\log ...

  6. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.

  7. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    The clique number ω(G) is the number of vertices in a maximum clique of G. [1] Several closely related clique-finding problems have been studied. [14] In the maximum clique problem, the input is an undirected graph, and the output is a maximum clique in the graph. If there are multiple maximum cliques, one of them may be chosen arbitrarily. [14]

  8. Interval scheduling - Wikipedia

    en.wikipedia.org/wiki/Interval_scheduling

    The goal here is to execute a single representative task from each group. GISDPk is a restricted version of GISDP in which the number of intervals in each group is at most k. The group interval scheduling maximization problem (GISMP) is to find a largest compatible set - a set of non-overlapping representatives of maximum size. The goal here is ...

  9. Activity selection problem - Wikipedia

    en.wikipedia.org/wiki/Activity_selection_problem

    The problem is to select the maximum number of activities that can be performed by a single person or machine, assuming that a person can only work on a single activity at a time. The activity selection problem is also known as the Interval scheduling maximization problem (ISMP) , which is a special type of the more general Interval Scheduling ...