When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    In shallow water, the group velocity is equal to the shallow-water phase velocity. This is because shallow water waves are not dispersive. In deep water, the group velocity is equal to half the phase velocity: {{math|c g = ⁠ 1 / 2 ⁠ c p. [7] The group velocity also turns out to be the energy transport velocity.

  3. Group velocity - Wikipedia

    en.wikipedia.org/wiki/Group_velocity

    Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.

  4. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    Phase and group velocity divided by √ gh as a function of ⁠ h / λ ⁠. A: phase velocity, B: group velocity, C: phase and group velocity √ gh valid in shallow water. Drawn lines: based on dispersion relation valid in arbitrary depth. Dashed lines: based on dispersion relation valid in deep water.

  5. Phase velocity - Wikipedia

    en.wikipedia.org/wiki/Phase_velocity

    Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.

  6. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    The dispersion relation for deep water waves is often written as =, where g is the acceleration due to gravity. Deep water, in this respect, is commonly denoted as the case where the water depth is larger than half the wavelength. [4] In this case the phase velocity is

  7. Kelvin wake pattern - Wikipedia

    en.wikipedia.org/wiki/Kelvin_wake_pattern

    In deep water, shock waves form even from slow-moving sources, because waves with short enough wavelengths move slower. These shock waves are at sharper angles than one would naively expect, because it is group velocity that dictates the area of constructive interference and, in deep water, the group velocity is half of the phase velocity.

  8. Stokes drift - Wikipedia

    en.wikipedia.org/wiki/Stokes_drift

    Stokes drift under periodic waves in deep water, for a period T = 5 s and a mean water depth of 25 m. Left: instantaneous horizontal flow velocities. Right: average flow velocities. Black solid line: average Eulerian velocity; red dashed line: average Lagrangian velocity, as derived from the Generalized Lagrangian Mean (GLM).

  9. Wave shoaling - Wikipedia

    en.wikipedia.org/wiki/Wave_shoaling

    The phase velocity c p (blue) and group velocity c g (red) as a function of water depth h for surface gravity waves of constant frequency, according to Airy wave theory. Quantities have been made dimensionless using the gravitational acceleration g and period T, with the deep-water wavelength given by L 0 = gT 2 /(2π) and the deep-water phase ...