Search results
Results From The WOW.Com Content Network
A gain greater than one (greater than zero dB), that is, amplification, is the defining property of an active device or circuit, while a passive circuit will have a gain of less than one. [4] The term gain alone is ambiguous, and can refer to the ratio of output to input voltage (voltage gain), current (current gain) or electric power (power ...
In electronics and control system theory, loop gain is the sum of the gain, expressed as a ratio or in decibels, around a feedback loop. Feedback loops are widely used in electronics in amplifiers and oscillators , and more generally in both electronic and nonelectronic industrial control systems to control industrial plant and equipment.
Gain (electronics), an electronics and signal processing term; Antenna gain; Gain (laser), the amplification involved in laser emission; Gain (projection screens) Information gain in decision trees, in mathematics and computer science; GAIN domain, a protein domain; Learning rate, a tuning parameter in stochastic approximation methods, also ...
In electronics the amplification factor, or gain, is the ratio of the output to the input of an amplifier, sometimes represented by the symbol A F. In numerical analysis the amplification factor is a number derived using Von Neumann stability analysis to determine stability of a numerical scheme for a partial differential equation .
For transistors, the current-gain–bandwidth product is known as the f T or transition frequency. [4] [5] It is calculated from the low-frequency (a few kilohertz) current gain under specified test conditions, and the cutoff frequency at which the current gain drops by 3 decibels (70% amplitude); the product of these two values can be thought of as the frequency at which the current gain ...
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
The phase matching angle makes possible any gain at all (0th order). In a collinear setup, the freedom to choose the center wavelength allows a constant gain up to first order in wavelength. Noncollinear OPAs were developed to have an additional degree of freedom, allowing constant gain up to second order in wavelength.
The usual design procedure is to design the innermost subsystem (the current control loop in the telescope example) using local feedback to linearize and flatten the gain. Stability is generally assured by Bode plot methods. Usually, the bandwidth is made as wide as possible. Then the next loop (the velocity loop in the telescope example) is ...