Search results
Results From The WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...
Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
M = 15 The 15 perfect matchings of K 6 15 as the difference of two positive squares (in orange).. 15 is: The eighth composite number and the sixth semiprime and the first odd and fourth discrete semiprime; [1] its proper divisors are 1, 3, and 5, so the first of the form (3.q), [2] where q is a higher prime.
In algebra, the elementary divisors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If R {\displaystyle R} is a PID and M {\displaystyle M} a finitely generated R {\displaystyle R} -module, then M is isomorphic to a finite direct sum of the form
In number theory, a highly abundant number is a natural number with the property that the sum of its divisors (including itself) is greater than the sum of the divisors of any smaller natural number. Highly abundant numbers and several similar classes of numbers were first introduced by Pillai ( 1943 ), and early work on the subject was done by ...