When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Calculation of the speed difference for a uniform acceleration. Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field.

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    Calculate (by direct time-domain simulation) the maximum instantaneous absolute acceleration experienced by the mass element of your SDOF at any time during (or after) exposure to the shock in question. This acceleration is a; Draw a dot at (f,a); Repeat steps 2–4 for many other values of f, and connect all the dots together into a smooth curve.

  5. Proportional navigation - Wikipedia

    en.wikipedia.org/wiki/Proportional_navigation

    Where is the acceleration perpendicular to the missile's instantaneous velocity vector, is the proportionality constant generally having an integer value 3-5 (dimensionless), ˙ is the line of sight rate, and V is the closing velocity.

  6. Random vibration - Wikipedia

    en.wikipedia.org/wiki/Random_vibration

    The root mean square acceleration (G rms) is the square root of the area under the ASD curve in the frequency domain. The G rms value is typically used to express the overall energy of a particular random vibration event and is a statistical value used in mechanical engineering for structural design and analysis purposes.

  7. Angular acceleration - Wikipedia

    en.wikipedia.org/wiki/Angular_acceleration

    In physics, angular acceleration (symbol α, alpha) is the time rate of change of angular velocity.Following the two types of angular velocity, spin angular velocity and orbital angular velocity, the respective types of angular acceleration are: spin angular acceleration, involving a rigid body about an axis of rotation intersecting the body's centroid; and orbital angular acceleration ...

  8. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Discontinuities in acceleration do not occur in real-world environments because of deformation, quantum mechanics effects, and other causes. However, a jump-discontinuity in acceleration and, accordingly, unbounded jerk are feasible in an idealized setting, such as an idealized point mass moving along a piecewise smooth, whole continuous path ...

  9. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...