When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ventricular action potential - Wikipedia

    en.wikipedia.org/wiki/Ventricular_action_potential

    In electrocardiography, the ventricular cardiomyocyte membrane potential is about −90 mV at rest, [1] which is close to the potassium reversal potential. When an action potential is generated, the membrane potential rises above this level in five distinct phases. [1] Phase 4: Resting membrane potential remains stable at ≈−90 mV. [1]

  3. Cardiac action potential - Wikipedia

    en.wikipedia.org/wiki/Cardiac_action_potential

    The standard model used to understand the cardiac action potential is that of the ventricular myocyte. Outlined below are the five phases of the ventricular myocyte action potential, with reference also to the SAN action potential. Figure 2a: Ventricular action potential (left) and sinoatrial node action potential (right) waveforms.

  4. Wiggers diagram - Wikipedia

    en.wikipedia.org/wiki/Wiggers_diagram

    A Wiggers diagram, named after its developer, Carl Wiggers, is a unique diagram that has been used in teaching cardiac physiology for more than a century. [1] [2] In the Wiggers diagram, the X-axis is used to plot time subdivided into the cardiac phases, while the Y-axis typically contains the following on a single grid: Blood pressure. Aortic ...

  5. File:Ventricular myocyte action potential.svg - Wikipedia

    en.wikipedia.org/wiki/File:Ventricular_myocyte...

    Phases of a cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing efflux of potassium ions. The characteristic plateau ("2") results from the opening of voltage-sensitive calcium ...

  6. Cardiac pacemaker - Wikipedia

    en.wikipedia.org/wiki/Cardiac_pacemaker

    The action potential generated by the SA node passes down the electrical conduction system of the heart, and depolarizes the other potential pacemaker cells (AV node) to initiate action potentials before these other cells have had a chance to generate their own spontaneous action potential, thus they contract and propagate electrical impulses ...

  7. Antiarrhythmic agent - Wikipedia

    en.wikipedia.org/wiki/Antiarrhythmic_agent

    The action potential is divided into 5 phases and shown in the diagram. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing efflux of potassium ions.

  8. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    As an action potential (nerve impulse) travels down an axon there is a change in electric polarity across the membrane of the axon. In response to a signal from another neuron, sodium- (Na +) and potassium- (K +)–gated ion channels open and close as the membrane reaches its threshold potential.

  9. Cardiac physiology - Wikipedia

    en.wikipedia.org/wiki/Cardiac_physiology

    When the action potential triggers the muscles in the atria to contract (atrial systole), the pressure within the atria rises further, pumping blood into the ventricles. During ventricular systole, pressure rises in the ventricles, pumping blood into the pulmonary trunk from the right ventricle and into the aorta from the left ventricle. [1]