Search results
Results From The WOW.Com Content Network
In the single-price model, at the point of allocative efficiency price is equal to marginal cost. [3] [4] At this point the social surplus is maximized with no deadweight loss (the latter being the value society puts on that level of output produced minus the value of resources used to achieve that level). Allocative efficiency is the main tool ...
When drawing diagrams for businesses, allocative efficiency is satisfied if output is produced at the point where marginal cost is equal to average revenue. This is the case for the long-run equilibrium of perfect competition. Productive efficiency occurs when units of goods are being supplied at the lowest possible average total cost.
Perfect competition provides both allocative efficiency and productive efficiency: Such markets are allocatively efficient, as output will always occur where marginal cost is equal to average revenue i.e. price (MC = AR).
By doing so, it defines productive efficiency in the context of that production set: a point on the frontier indicates efficient use of the available inputs (such as points B, D and C in the graph), a point beneath the curve (such as A) indicates inefficiency, and a point beyond the curve (such as X) indicates impossibility.
Also called resource cost advantage. The ability of a party (whether an individual, firm, or country) to produce a greater quantity of a good, product, or service than competitors using the same amount of resources. absorption The total demand for all final marketed goods and services by all economic agents resident in an economy, regardless of the origin of the goods and services themselves ...
Average-cost pricing does also have some disadvantages. By setting price equal to the intersection of the demand curve and the average total cost curve, the firm's output is allocatively inefficient as the price is less than the marginal cost (which is the output quantity for a perfectly competitive and allocatively efficient market).
In Fig. 14 the point x is a Pareto optimum which does not satisfy the definition of competitive equilibrium. The question of whether the economy would settle at such a point is quite separate from whether it satisfies a given definition of equilibrium; evidently in this case it would indeed settle there.
An example PPF: points B, C and D are all productively efficient, but an economy at A would not be, because D involves more production of both goods. Point X cannot be achieved. Productive efficiency occurs under competitive equilibrium at the minimum of average total cost for each good, such as the one shown here.