When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Origin (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Origin_(mathematics)

    The origin of a Cartesian coordinate system. In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same ...

  3. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    The geometric equivalent to this moment is a vector whose direction is perpendicular to the plane containing the line L and the origin, and whose length equals twice the area of the triangle formed by the displacement and the origin. Treating the points as displacements from the origin, the moment is m = x × y, where "×" denotes the vector ...

  4. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    Namely, the y-axis is necessarily the perpendicular to the x-axis through the point marked 0 on the x-axis. But there is a choice of which of the two half lines on the perpendicular to designate as positive and which as negative. Each of these two choices determines a different orientation (also called handedness) of the Cartesian plane.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.

  6. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    Associate to any line through the origin the unique plane through the origin which is perpendicular (orthogonal) to the line. When, in the model, these lines are considered to be the points and the planes the lines of the projective plane PG(2, R), this association becomes a correlation (actually a polarity) of the projective plane. The sphere ...

  7. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and

  8. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  9. Real projective plane - Wikipedia

    en.wikipedia.org/wiki/Real_projective_plane

    One common model of the real projective plane is the space of lines in three-dimensional Euclidean space which pass through a particular origin point; in this model, lines through the origin are considered to be the "points" of the projective plane, and planes through the origin are considered to be the "lines" in the projective plane. These ...

  1. Related searches origin lies on which axis of plane passes through point c and one vector

    origin of a polar coordinateorigin of the cartesian coordinates
    origin coordinates in math