Search results
Results From The WOW.Com Content Network
Vertex distance. Vertex distance is the distance between the back surface of a corrective lens, i.e. glasses (spectacles) or contact lenses, and the front of the cornea. Increasing or decreasing the vertex distance changes the optical properties of the system, by moving the focal point forward or backward, effectively changing the power of the ...
Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
Butane (C 4 H 10) has two different structural isomers: n-butane, with a linear structure of four carbon atoms, and isobutane, with a branched structure.The chemical graph for n-butane is a four-vertex path graph, and the chemical graph for isobutane is a tree with one central vertex connected to three leaves.
Color Details * Family of digraphs found by W.H.Kautz. More details are available in a paper by the author. * Family of digraphs found by V.Faber and J.W.Moore.
A fan graph is a graph on n + 1 vertices where there is an edge between vertex i and n + 1 for all i = 1, 2, 3, …, n, and there is an edge between vertex i and i + 1 for all i = 1, 2, 3, …, n – 1. The resistance distance between vertex n + 1 and vertex i ∈ {1, 2, 3, …, n} is +
Free-space loss increases with the square of distance between the antennas because the radio waves spread out by the inverse square law and decreases with the square of the wavelength of the radio waves. The FSPL is rarely used standalone, but rather as a part of the Friis transmission formula, which includes the gain of antennas. [3]
A peripheral vertex in a graph of diameter d is one whose eccentricity is d —that is, a vertex whose distance from its furthest vertex is equal to the diameter. Formally, v is peripheral if ϵ(v) = d. A pseudo-peripheral vertex v has the property that, for any vertex u, if u is as far away from v as possible, then v is as far away from u as
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...