Search results
Results From The WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The scikit-learn project started as scikits.learn, a Google Summer of Code project by David Cournapeau. After having worked for Silveregg, a SaaS Japanese company delivering recommendation systems for Japanese online retailers, [3] he worked for 6 years at Enthought, a scientific consulting company.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of Python 2. [37] Python consistently ranks as one of the most popular programming languages, and has gained widespread use in the machine learning community. [38] [39] [40] [41]
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...
Example: In natural language processing (NLP), k-means clustering has been integrated with simple linear classifiers for semi-supervised learning tasks such as named-entity recognition (NER). By first clustering unlabeled text data using k -means, meaningful features can be extracted to improve the performance of NER models.
scikit-image (formerly scikits.image) is an open-source image processing library for the Python programming language. [2] It includes algorithms for segmentation, geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection, and more. [3]