Search results
Results From The WOW.Com Content Network
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
It is: = ( ( )) ( ( ) +) = In this product, each term is a superparticular ratio, each numerator is an odd prime number, and each denominator is the nearest multiple of 4 to the numerator. [7] The product is conditionally convergent; its terms must be taken in order of increasing p .
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
To change 1 / 3 to a decimal, divide 1.000... by 3 (" 3 into 1.000... "), and stop when the desired accuracy is obtained, e.g., at 4 decimals with 0.3333. The fraction 1 / 4 can be written exactly with two decimal digits, while the fraction 1 / 3 cannot be written exactly as a decimal with a finite number of digits.
3.12 Miscellaneous. 4 See also. ... 1 (3): 254– 258. Zbl ... Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Expressions are often contrasted with statements—syntactic entities that have no value (an instruction). Representation of the expression (8 − 6) × (3 + 1) as a Lisp tree, from a 1985 Master's Thesis [44] Except for numbers and variables, every mathematical expression may be viewed as the symbol of an operator followed by a sequence of ...
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.