Search results
Results From The WOW.Com Content Network
Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star polygon with 10 sides; Hendecagram - star polygon with 11 sides; Dodecagram - star polygon with 12 sides; Apeirogon - generalized polygon with countably infinite ...
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
A rectangle, <4>, is a convex direct equiangular polygon, containing four 90° internal angles. A concave indirect equiangular polygon, <6-2>, like this hexagon, counterclockwise, has five left turns and one right turn, like this tetromino. A skew polygon has equal angles off a plane, like this skew octagon alternating red and blue edges on a cube.
A quadrilateral is a square if and only if it is any one of the following: [2] [3] A rectangle with two adjacent equal sides; A rhombus with a right vertex angle; A rhombus with all angles equal; A parallelogram with one right vertex angle and two adjacent equal sides; A quadrilateral with four equal sides and four right angles
In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square.
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.
A convex equilateral pentagon can be described by two consecutive angles, which together determine the other angles. However, equilateral pentagons, and equilateral polygons with more than five sides, can also be concave, and if concave pentagons are allowed then two angles are no longer sufficient to determine the shape of the pentagon.