When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The numeric value adopted for ɡ 0 was, in accordance with the 1887 CIPM declaration, obtained by dividing Defforges's result – 980.991 cm⋅s −2 in the cgs system then en vogue – by 1.0003322 while not taking more digits than are warranted considering the uncertainty in the result.

  3. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Cavendish's result was first improved upon by John Henry Poynting (1891), [24] who published a value of 5.49(3) g⋅cm −3, differing from the modern value by 0.2%, but compatible with the modern value within the cited relative standard uncertainty of 0.55%.

  4. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...

  5. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...

  6. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Assuming SI units, F is measured in newtons (N), m 1 and m 2 in kilograms (kg), r in meters (m), and the constant G is 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. [12] The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798 ...

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity anomalies . This does not take into account other effects, such as buoyancy or drag.

  8. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    For example: An acceleration of 1 g equates to a rate of change in velocity of approximately 35 km/h (22 mph) for each second that elapses. Therefore, if an automobile is capable of braking at 1 g and is traveling at 35 km/h, it can brake to a standstill in one second and the driver will experience a deceleration of 1 g. The automobile ...

  9. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.