Ads
related to: the distributive property problems
Search results
Results From The WOW.Com Content Network
In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...
In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most famous and long-standing open problems in lattice theory; it had a deep impact on the development of lattice theory itself.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
Distributivity, a property of binary operations that generalises the distributive law from elementary algebra; Distribution (number theory) Distribution problems, a common type of problems in combinatorics where the goal is to enumerate the number of possible distributions of m objects to n recipients, subject to various conditions; see ...
In mathematics, economics, and computer science, the lattice of stable matchings is a distributive lattice whose elements are stable matchings.For a given instance of the stable matching problem, this lattice provides an algebraic description of the family of all solutions to the problem.
The principle of distributivity states that the algebraic distributive law is valid, where both logical conjunction and logical disjunction are distributive over each other so that for any propositions A, B and C the equivalences