Search results
Results From The WOW.Com Content Network
The specific strength is a material's (or muscle's) strength (force per unit area at failure) divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength.
Although, measurement variations by an order of 10-1 have been observed, the variations can be minimized if suitable precautions are taken. [1] [2] A wear volume versus distance curve can be divided into at least two regimes, the transient wear regime and the steady-state wear regime. The volume or weight loss is initially curvilinear. The wear ...
The term material strength is used when referring to mechanical stress parameters. These are physical quantities with dimension homogeneous to pressure and force per unit surface. The traditional measure unit for strength are therefore MPa in the International System of Units, and the psi between the United States customary units. Strength ...
According to this setup, a male athlete weighing 320 pounds and lifting a total of 1400 pounds would have a normalised lift weight of 353.0, and a lifter weighing 200 pounds and lifting a total of 1000 pounds (the sum of their highest successful attempts at the squat, bench, and deadlift) would have a normalised lift weight of 288.4. Thus the ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
where represents the applied true stress on the material, is the true strain, and is the strength coefficient. The value of the strain hardening exponent lies between 0 and 1, with a value of 0 implying a perfectly plastic solid and a value of 1 representing a perfectly elastic solid.
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
The characteristic strength is defined as the strength of the concrete below which not more than 5% of the test results are expected to fall. [ 16 ] For design purposes, this compressive strength value is restricted by dividing with a factor of safety, whose value depends on the design philosophy used.