When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    In thermodynamics, the compressibility factor (Z), also known as the compression factor or the gas deviation factor, describes the deviation of a real gas from ideal gas behaviour. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure.

  3. Methanol (data page) - Wikipedia

    en.wikipedia.org/wiki/Methanol_(data_page)

    Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures:

  4. Standard temperature and pressure - Wikipedia

    en.wikipedia.org/wiki/Standard_temperature_and...

    The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa

  5. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  6. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    Molar volume is given by = /, where is the Avogadro constant, is the volume, and is the number of molecules (the ratio / is the amount of substance, a physical quantity with the base unit mole). When van der Waals created his equation, few scientists believed that fluids were composed of rapidly moving particles.

  7. Ammonia (data page) - Wikipedia

    en.wikipedia.org/wiki/Ammonia_(data_page)

    S o gas: 192.77 J/(mol K) Heat capacity, c p: 35.06 J/(mol K) Heat capacity ratio, ... log 10 of anydrous ammonia vapor pressure. Uses formula shown below.

  8. Propane (data page) - Wikipedia

    en.wikipedia.org/wiki/Propane_(data_page)

    −103.85 [1] kJ/mol Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid: −118.910 kJ/mol Standard molar entropy, S o liquid: 171.0 J/(mol K) Heat capacity, c p: 98.36 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas: −104.7 kJ ...

  9. Mole fraction - Wikipedia

    en.wikipedia.org/wiki/Mole_fraction

    In chemistry, the mole fraction or molar fraction, also called mole proportion or molar proportion, is a quantity defined as the ratio between the amount of a constituent substance, n i (expressed in unit of moles, symbol mol), and the total amount of all constituents in a mixture, n tot (also expressed in moles): [1]