Search results
Results From The WOW.Com Content Network
The word oxygen in the literature typically refers to the most common oxygen allotrope, elemental/diatomic oxygen (O 2), as it is a common product or reactant of many biogeochemical redox reactions within the cycle. [2] Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O 2 ...
Photosynthetic prokaryotic organisms that produced O 2 as a byproduct lived long before the first build-up of free oxygen in the atmosphere, [5] perhaps as early as 3.5 billion years ago. The oxygen cyanobacteria produced would have been rapidly removed from the oceans by weathering of reducing minerals, [citation needed] most notably ferrous ...
The ozone–oxygen cycle is the process by which ozone is continually regenerated in Earth's stratosphere, converting ultraviolet radiation (UV) into heat. In 1930 Sydney Chapman resolved the chemistry involved. The process is commonly called the Chapman cycle by atmospheric scientists.
Before this time, any oxygen produced by cyanobacterial photosynthesis would be readily removed by the oxidation of reducing substances on the Earth's surface, notably ferrous iron, sulfur and atmospheric methane. Free oxygen molecules did not start to accumulate in the atmosphere until the rate of production of oxygen began to exceed the ...
The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, or Oxygen Crisis, was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere and shallow seas first experienced a rise in the concentration of free oxygen. [2]
The main driving factor of the oxygen cycle is photosynthesis, which is responsible for modern Earth's atmosphere. Photosynthesis releases oxygen into the atmosphere, while respiration, decay, and combustion remove it from the atmosphere. In the present equilibrium, production and consumption occur at the same rate.
The ozone cycle. Three forms (or allotropes) of oxygen are involved in the ozone-oxygen cycle: oxygen atoms (O or atomic oxygen), oxygen gas (O 2 or diatomic oxygen), and ozone gas (O 3 or triatomic oxygen). [15] Ozone is formed in the stratosphere when oxygen gas molecules photodissociate after absorbing UVC photons. This converts a single O
The word oxygen in the literature typically refers to molecular oxygen (O 2) since it is the common product or reactant of many biogeochemical redox reactions within the cycle. [37] Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O 2 production) or sink (O 2 consumption). [36 ...