When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Foliation - Wikipedia

    en.wikipedia.org/wiki/Foliation

    2-dimensional section of Reeb foliation 3-dimensional model of Reeb foliation. In mathematics (differential geometry), a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space R n into the cosets x + R p of the standardly embedded ...

  3. Frobenius theorem (differential topology) - Wikipedia

    en.wikipedia.org/wiki/Frobenius_theorem...

    A p-dimensional, class C r foliation of an n-dimensional manifold M is a decomposition of M into a union of disjoint connected submanifolds {L α} α∈A, called the leaves of the foliation, with the following property: Every point in M has a neighborhood U and a system of local, class C r coordinates x=(x 1, ⋅⋅⋅, x n) : U→R n such that ...

  4. Novikov's compact leaf theorem - Wikipedia

    en.wikipedia.org/wiki/Novikov's_compact_leaf_theorem

    The leaf is a torus T 2 bounding a solid torus with the Reeb foliation. The theorem was proved by Sergei Novikov in 1964. Earlier, Charles Ehresmann had conjectured that every smooth codimension-one foliation on S 3 had a compact leaf, which was known to be true for all known examples; in particular, the Reeb foliation has a compact leaf that ...

  5. Reeb foliation - Wikipedia

    en.wikipedia.org/wiki/Reeb_foliation

    In mathematics, the Reeb foliation is a particular foliation of the 3-sphere, introduced by the French mathematician Georges Reeb (1920–1993). It is based on dividing the sphere into two solid tori , along a 2- torus : see Clifford torus .

  6. Distribution (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(differential...

    In other words, every point admits a foliation chart, i.e. the distribution is tangent to the leaves of a foliation. Moreover, this local characterisation coincides with the definition of integrability for a G {\displaystyle G} -structures , when G {\displaystyle G} is the group of real invertible upper-triangular block matrices (with ( n × n ...

  7. Lineation (geology) - Wikipedia

    en.wikipedia.org/wiki/Lineation_(geology)

    Intersection lineations are linear structures formed by the intersection of any two surfaces in a three-dimensional space. The trace of bedding on an intersecting foliation plane commonly appears as colour stripes generally parallel to local fold's hinges. Intersection lineations can also be due to the intersection of two foliations.

  8. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (a tangent plane) to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer ...

  9. Quintic threefold - Wikipedia

    en.wikipedia.org/wiki/Quintic_threefold

    One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomial = + + + + Computing the partial derivatives of gives the four polynomials = = = = = Since the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since [::::] is not a point in .