When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.

  3. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    In the th step, it computes the subarray with the largest sum ending at ; this sum is maintained in variable current_sum. [ note 3 ] Moreover, it computes the subarray with the largest sum anywhere in A [ 1 … j ] {\displaystyle A[1\ldots j]} , maintained in variable best_sum , [ note 4 ] and easily obtained as the maximum of all values of ...

  4. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .

  5. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...

  6. Counting sort - Wikipedia

    en.wikipedia.org/wiki/Counting_sort

    Because it uses arrays of length k + 1 and n, the total space usage of the algorithm is also O(n + k). [1] For problem instances in which the maximum key value is significantly smaller than the number of items, counting sort can be highly space-efficient, as the only storage it uses other than its input and output arrays is the Count array ...

  7. Prefix sum - Wikipedia

    en.wikipedia.org/wiki/Prefix_sum

    Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.

  8. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.

  9. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...