Search results
Results From The WOW.Com Content Network
The multiple subset sum problem is an optimization problem in computer science and operations research.It is a generalization of the subset sum problem.The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets.
In the th step, it computes the subarray with the largest sum ending at ; this sum is maintained in variable current_sum. [note 3] Moreover, it computes the subarray with the largest sum anywhere in […], maintained in variable best_sum, [note 4] and easily obtained as the maximum of all values of current_sum seen so far, cf. line 7 of the ...
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
Because it uses arrays of length k + 1 and n, the total space usage of the algorithm is also O(n + k). [1] For problem instances in which the maximum key value is significantly smaller than the number of items, counting sort can be highly space-efficient, as the only storage it uses other than its input and output arrays is the Count array ...
It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.
For example, if all the values are O(n k) for some k, then the time required is O(n k+2). This algorithm is easily modified to return the subset with sum 0 if there is one. This solution does not count as polynomial time in complexity theory because P-N is not polynomial in the size of the problem, which is the number of bits used to represent ...