When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. ... The orbit equation in polar coordinates, ...

  3. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  4. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The period of the resultant orbit will be longer than that of the original circular orbit. The consequences of the rules of orbital mechanics are sometimes counter-intuitive. For example, if two spacecrafts are in the same circular orbit and wish to dock, unless they are very close, the trailing craft cannot simply fire its engines to go faster.

  5. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    If the same sphere were made of lead the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period. When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density ρ (in kg/m 3), the above equation simplifies to (since M = Vρ = ⁠ 4 / 3 ⁠ π a 3 ρ)

  6. Innermost stable circular orbit - Wikipedia

    en.wikipedia.org/.../Innermost_stable_circular_orbit

    The innermost stable circular orbit (often called the ISCO) is the smallest marginally stable circular orbit in which a test particle can stably orbit a massive object in general relativity. [1] The location of the ISCO, the ISCO-radius ( r i s c o {\displaystyle r_{\mathrm {isco} }} ), depends on the mass and angular momentum (spin) of the ...

  7. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.

  8. Effective potential - Wikipedia

    en.wikipedia.org/wiki/Effective_potential

    There are many useful features of the effective potential, such as . To find the radius of a circular orbit, simply minimize the effective potential with respect to , or equivalently set the net force to zero and then solve for : = After solving for , plug this back into to find the maximum value of the effective potential .

  9. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Conversely, the closed trajectory is called a subharmonic orbit if k is the inverse of an integer, i.e., if m = 1 in the formula k = m/n. For example, if k = 1/3 (green planet in Figure 5, green orbit in Figure 10), the resulting orbit is called the third subharmonic of the original orbit. Although such orbits are unlikely to occur in nature ...