When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    An ellipse (red) and its evolute (blue). The dots are the vertices of the ellipse, at the points of greatest and least curvature. For a semi-circle of radius a in the lower half-plane =. The circle of radius a has a radius of curvature equal to a.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. ... The radius of curvature at the vertices , is: The radius of ...

  4. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...

  5. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    Its radius equals Earth's Gaussian radius of curvature, and its radial direction coincides with the geodetic normal direction. The center of the osculating sphere is offset from the center of the ellipsoid, but is at the center of curvature for the given point on the ellipsoid surface.

  6. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that point. A geometric construction was described by Isaac Newton in his Principia:

  7. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.

  8. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  9. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    The evolute of a curve (in this case, an ellipse) is the envelope of its normals. In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve.