When.com Web Search

  1. Ad

    related to: pythagoras theorem for beginners

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    The spherical excess and the area of the triangle determine each other via the relation (called Girard's theorem): = where is the radius of the sphere, equal to = where > is the constant curvature. The spherical excess can also be calculated from the three side lengths, the lengths of two sides and their angle, or the length of one side and the ...

  4. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...

  5. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    The three sides of a right triangle are related by the Pythagorean theorem, which in modern algebraic notation can be written a 2 + b 2 = c 2 , {\displaystyle a^{2}+b^{2}=c^{2},} where c {\displaystyle c} is the length of the hypotenuse (side opposite the right angle), and a {\displaystyle a} and b {\displaystyle b} are the lengths of the legs ...

  6. Inverse Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_Pythagorean_theorem

    In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem [1] or the upside down Pythagorean theorem [2]) is as follows: [3] Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then

  7. Pythagorean addition - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_addition

    In mathematics, Pythagorean addition is a binary operation on the real numbers that computes the length of the hypotenuse of a right triangle, given its two sides.According to the Pythagorean theorem, for a triangle with sides and , this length can be calculated as = +, where denotes the Pythagorean addition operation.

  8. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in trigonometry. In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0.

  9. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    The use of the Pythagorean theorem and the tangent secant theorem can be replaced by a single application of the power of a point theorem. Case of acute angle γ, where a < 2b cos γ. Drop the perpendicular from A onto a = BC, creating a line segment of length b cos γ. Duplicate the right triangle to form the isosceles triangle ACP.