When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):

  3. Hess's law - Wikipedia

    en.wikipedia.org/wiki/Hess's_law

    A representation of Hess's law (where H represents enthalpy) Hess's law of constant heat summation, also known simply as Hess's law, is a relationship in physical chemistry and thermodynamics [1] named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840.

  4. Dulong–Petit law - Wikipedia

    en.wikipedia.org/wiki/Dulong–Petit_law

    Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.. The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is ...

  5. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    A prime example of this irreversibility is the transfer of heat by conduction or radiation. It was known long before the discovery of the notion of entropy that when two bodies, initially of different temperatures, come into direct thermal connection, then heat immediately and spontaneously flows from the hotter body to the colder one.

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    In addition, a reversible heat engine operating between temperatures T 1 and T 3 must have the same efficiency as one consisting of two cycles, one between T 1 and another (intermediate) temperature T 2, and the second between T 2 and T 3, where T 1 > T 2 > T 3.

  8. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    It follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem). In the case of Maxwell relations the function considered is a thermodynamic potential and x i {\displaystyle x_{i}} and x j {\displaystyle x_{j}} are two different natural variables for that potential, we ...

  9. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    See relations between specific heats for the derivation of the thermodynamic relations between the heat capacities. The above definition is the approach used to develop rigorous expressions from equations of state (such as Peng–Robinson ), which match experimental values so closely that there is little need to develop a database of ratios or ...