When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Map (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Map_(mathematics)

    A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]

  3. Pointed set - Wikipedia

    en.wikipedia.org/wiki/Pointed_set

    Pointed maps are the homomorphisms of these algebraic structures. The class of all pointed sets together with the class of all based maps forms a category. Every pointed set can be converted to an ordinary set by forgetting the basepoint (the forgetful functor is faithful), but the reverse is not true.

  4. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation.

  5. Harmonic map - Wikipedia

    en.wikipedia.org/wiki/Harmonic_map

    A harmonic map heat flow on an interval (a, b) assigns to each t in (a, b) a twice-differentiable map f t : M → N in such a way that, for each p in M, the map (a, b) → N given by t ↦ f t (p) is differentiable, and its derivative at a given value of t is, as a vector in T f t (p) N, equal to (∆ f t ) p. This is usually abbreviated as:

  6. Map folding - Wikipedia

    en.wikipedia.org/wiki/Map_folding

    In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases into rectangles, and the folds must again lie only along these creases. Lucas (1891) credits the invention of the stamp folding problem to Émile ...

  7. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    The circle inversion map is anticonformal, which means that at every point it preserves angles and reverses orientation (a map is called conformal if it preserves oriented angles). Algebraically, a map is anticonformal if at every point the Jacobian is a scalar times an orthogonal matrix with negative determinant: in two dimensions the Jacobian ...

  8. Category theory - Wikipedia

    en.wikipedia.org/wiki/Category_theory

    A class (), whose elements are called morphisms or maps or arrows. Each morphism f {\displaystyle f} has a source object a {\displaystyle a} and target object b {\displaystyle b} . The expression f : a ↦ b {\displaystyle f:a\mapsto b} would be verbally stated as " f {\displaystyle f} is a morphism from a to b ".

  9. Metric map - Wikipedia

    en.wikipedia.org/wiki/Metric_map

    Thus metric spaces together with metric maps form a category Met. Met is a subcategory of the category of metric spaces and Lipschitz functions. A map between metric spaces is an isometry if and only if it is a bijective metric map whose inverse is also a metric map. Thus the isomorphisms in Met are precisely the isometries.