Search results
Results From The WOW.Com Content Network
√ (square-root symbol) Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of.
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
The nabla is a triangular symbol resembling an inverted Greek delta: [1] or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, [2] [3] and was suggested by the encyclopedist William Robertson Smith in an 1870 letter to Peter Guthrie Tait.
The mathematics of ancient Mesopotamia, Egypt, and Greece had no explicit concept of negative numbers or signed areas, but had notions of shapes contained by some boundary lines or curves, whose areas could be computed or compared by pasting shapes together or cutting portions away, amounting to addition or subtraction of areas. [1]
5⋅5, or 5 2 (5 squared), can be shown graphically using a square. Each block represents one unit, 1⋅1, and the entire square represents 5⋅5, or the area of the square. In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation.
"Completing the square" consists to remark that the two first terms of a quadratic polynomial are also the first terms of the square of a linear polynomial, and to use this for expressing the quadratic polynomial as the sum of a square and a constant.
The term was coined when variables began to be used for sets and mathematical structures. onto A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e ...
takes a negative value for some positive real value of x. In the remaining of the section, suppose that a 0 ≠ 0. If it is not the case, zero is a root, and the localization of the other roots may be studied by dividing the polynomial by a power of the indeterminate, getting a polynomial with a nonzero constant term.