Search results
Results From The WOW.Com Content Network
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...
The inclination of exoplanets or members of multi-star star systems is the angle of the plane of the orbit relative to the plane perpendicular to the line of sight from Earth to the object. [5] An inclination of 0° is a face-on orbit, meaning the plane of the exoplanet's orbit is perpendicular to the line of sight with Earth.
Using, for example, the "mean anomaly" instead of "mean anomaly at epoch" means that time t must be specified as a seventh orbital element. Sometimes it is assumed that mean anomaly is zero at the epoch (by choosing the appropriate definition of the epoch), leaving only the five other orbital elements to be specified.
A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections , as every Kepler orbit is a conic section.
α - RA, right ascension, if the Greek letter does not appear, á letter will appear. δ - Dec, declination, if the Greek letter does not appear, ä letter will appear. P or P orb or T - orbital period; a - semi-major axis; b - semi-minor axis; q - periapsis, the minimum distance; Q - apoapsis, the maximum distance; e - eccentricity; i ...
The longitude of the ascending node, also known as the right ascension of the ascending node, is one of the orbital elements used to specify the orbit of an object in space. Denoted with the symbol Ω , it is the angle from a specified reference direction, called the origin of longitude , to the direction of the ascending node (☊), as ...
Ballistic capture orbit: a lower-energy orbit than a Hohmann transfer orbit, a spacecraft moving at a lower orbital velocity than the target celestial body is inserted into a similar orbit, allowing the planet or moon to move toward it and gravitationally snag it into orbit around the celestial body. [13]
A geostationary orbit is a special case of geosynchronous orbit with no inclination, and therefore no apparent movement across the sky from a fixed observation point on the Earth's surface. Due to their inherent instability, geostationary orbits will eventually become inclined if they are not corrected using thrusters. At the end of the ...