Ad
related to: bottom up approach nanomaterials
Search results
Results From The WOW.Com Content Network
This is a bottom-up nanomanufacturing technique for the fabrication of ferroelectric, piezoelectrically-active nanotubes. The method uses electron beam lithography to draw a vacuum on the precursor sol-gel solution, thereby creating a polymeric template.
Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition. [24] In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control. [25]
The top-down approach is breaking down of a system into small components, while bottom-up is assembling sub-systems into larger system. [15] A bottom-up approach for nano-assembly is a primary research target for nano-fabrication because top down synthesis is expensive (requiring external work) and is not selective on very small length scales, but is currently the primary mode of industrial ...
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.
Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties. [2] [3] [4]
A bottom-up approach synthesizes the nanowire by combining constituent adatoms. Most synthesis techniques use a bottom-up approach. Initial synthesis via either method may often be followed by a nanowire thermal treatment step, often involving a form of self-limiting oxidation, to fine tune the size and aspect ratio of the structures. [7]
Generally, nanorings are synthesized using a bottom-up approach, as top-down syntheses are limited by the entropic barriers presented by these materials. Currently, the number of different synthetic techniques used to make these particles is almost as diverse as the number of different types of nanorings themselves.
The technique is a "bottom-up" approach and allows great control over the separation of nanostructures within the array, as well as their individual widths. The separation is controlled by the size of the atomic terraces of the substrate, which is determined by its miscut from the principal index ; and the width of the nanostructures is ...