Search results
Results From The WOW.Com Content Network
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).
Gravity field surrounding Earth from a macroscopic perspective. Newton's law of universal gravitation can be written as a vector equation to account for the direction of the gravitational force as well as its magnitude. In this formula, quantities in bold represent vectors.
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
The force of gravity is weakest at the equator because of the centrifugal force caused by the Earth's rotation and because points on the equator are furthest from the center of the Earth. The force of gravity varies with latitude and increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles. [80] [81]
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass.
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).
For this the gravitational force, i.e. the gradient of the potential, must be computed. Efficient recursive algorithms have been designed to compute the gravitational force for any N z {\displaystyle N_{z}} and N t {\displaystyle N_{t}} (the max degree of zonal and tesseral terms) and such algorithms are used in standard orbit propagation software.